skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kulkarni, Pranav_P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quantitative phase imaging (QPI) is an invaluable microscopic technology for definitively imaging phase objects such as biological cells and optical fibers. Traditionally, the condenser lens in QPI produces disk illumination of the object. However, it has been realized by numerous investigators that annular illumination can produce higher-resolution images. Although this performance improvement is impressive and well documented, the evidence presented has invariably been qualitative in nature. Recently, a theoretical basis for annular illumination was presented by Baoet al.[Appl. Opt.58,137(2019)APOPAI0003-693510.1364/AO.58.000137]. In our current work, systematic experimental QPI measurements are made with a reference phase mask to rigorously document the performance of annular illumination. In both theory and experiment, three spatial-frequency regions are identified: low, mid, and high. The low spatial-frequency region response is very similar for disk and annular illumination, both theoretically and experimentally. Theoretically, the high spatial-frequency region response is predicted to be much better for the annular illumination compared to the disk illumination––and is experimentally confirmed. In addition, the mid-spatial-frequency region response is theoretically predicted to be less for annular illumination than for disk illumination. This theoretical degradation of the mid-spatial-frequency region is only slightly experimentally observed. This bonus, although not well understood, further elevates the performance of annular illumination over disk illumination. 
    more » « less